Advertisement

The use of fluorescent dyes and probes in surgical oncology

  • E.A. te Velde
    Affiliations
    Department of Surgical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
    Search for articles by this author
  • Th. Veerman
    Affiliations
    Department of Surgical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
    Search for articles by this author
  • V. Subramaniam
    Affiliations
    Department of Biophysical Engineering, Faculty of Science and Technology, University of Twente, The Netherlands
    Search for articles by this author
  • Th. Ruers
    Correspondence
    Corresponding author. Department of Surgical Oncology, Antoni van Leeuwenhoek Hospital, PO Box 90203, 1006 BE Amsterdam, The Netherlands. Tel.: +31 205122565; fax: +31 205122554.
    Affiliations
    Department of Surgical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
    Search for articles by this author

      Abstract

      Aims and background

      Improved visualization of surgical targets inside of the patient helps to improve radical resection of the tumor while sparing healthy surrounding tissue. In order to achieve an image, optical contrast must be generated by properties intrinsic to the tissue, or require the attachment of special visualization labels to the tumor. In this overview the current status of the clinical use of fluorescent dyes and probes are reviewed.

      Methods

      In this review, all experimental and clinical studies concerning fluorescent imaging were included. In addition, in the search for the optimal fluorescent imaging modality, all characteristics of a fluorescent dye were described.

      Findings and conclusions

      Although the technique of imaging through fluorescence sounds promising and several animal models show efficacy, official approval of these agents for further clinical evaluation, is eagerly awaited.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Surgical Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kovar J.L.
        • Simpson M.A.
        • Schutz-Geschwender A.
        • et al.
        A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models.
        Anal Biochem. 2007; 367: 1-12
        • Licha K.
        Contrast agents for optical imaging.
        Top Curr Chem. 2002; 222: 1-29
        • Osterman H.L.
        • Schutz-Geschwender A.
        Seeing beyond the visible with IRDye infrared dyes.
        LI-COR Biosci. 2007; : 1-8
        • Frangioni J.V.
        In vivo near-infrared fluorescence imaging.
        Curr Opin Chem Biol. 2003; 7: 626-634
        • Kairdolf B.A.
        • Mancini M.C.
        • Smith A.M.
        • et al.
        minimizing nonspecific cellular binding of quantum dots with hydroxyl-derivatized surface coatings.
        Anal Chem. 2008; 80: 3029-3034
        • Lim Y.T.
        • Kim S.
        • Nakayama A.
        • et al.
        Selection of quantum dot wavelengths for biomedical assays and imaging.
        Mol Imaging. 2003; 2: 50-64
        • Ohnishi S.
        • Lomnes S.J.
        • Laurence R.G.
        • et al.
        Organic alternatives to quantum dots for intraoperative near-infrared fluorescent sentinel lymph node mapping.
        Mol Imaging. 2005; 4: 172-181
        • Jaffer F.A.
        • Libby P.
        • Weissleder R.
        Molecular imaging of cardiovascular disease.
        Circulation. 2007; 116: 1052-1061
        • Nakayama A.
        • Bianco A.C.
        • Zhang C.Y.
        • et al.
        Quantitation of brown adipose tissue perfusion in transgenic mice using near-infrared fluorescence imaging.
        Mol Imaging. 2003; 2: 37-49
        • Bentzen E.L.
        • Tomlinson I.D.
        • Mason J.
        • et al.
        Surface modification to reduce nonspecific binding of quantum dots in live cell assays.
        Bioconjug Chem. 2005; 16: 1488-1494
        • Sevick-Muraca E.M.
        • Houston J.P.
        • Gurfinkel M.
        Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents.
        Curr Opin Chem Biol. 2002; 6: 642-650
        • Benya R.
        • Quantana J.
        • Brundage B.
        Adverse reactions to indocyanine green: a case report and a review of the literature.
        Cathet Cardiovasc Diagn. 1989; 17: 231-233
        • Ogata F.
        • Azuma R.
        • Kikuchi M.
        • et al.
        Novel lymphography using indocyanine green dye for near-infrared fluorescence labeling.
        Ann Plast Surg. 2007; 58: 652-655
        • Hilger I.
        • Leistner Y.
        • Berndt A.
        • et al.
        Near-infrared fluorescence imaging of HER-2 protein over-expression in tumour cells.
        Eur Radiol. 2004; 14: 1124-1129
        • Hardman R.
        A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors.
        Environ Health Perspect. 2006; 114: 165-172
        • Borotto E.
        • Englender J.
        • Pourny J.C.
        • et al.
        Detection of the fluorescence of GI vessels in rats using a CCD camera or a near-infrared video endoscope.
        Gastrointest Endosc. 1999; 50: 684-688
        • Detter C.
        • Russ D.
        • Iffland A.
        • et al.
        Near-infrared fluorescence coronary angiography: a new noninvasive technology for intraoperative graft patency control.
        Heart Surg Forum. 2002; 5: 364-369
        • Taggart D.P.
        • Choudhary B.
        • Anastasiadis K.
        • et al.
        Preliminary experience with a novel intraoperative fluorescence imaging technique to evaluate the patency of bypass grafts in total arterial revascularization.
        Ann Thorac Surg. 2003; 75: 870-873
        • Herbort C.P.
        • LeHoang P.
        • Guex-Crosier Y.
        Schematic interpretation of indocyanine green angiography in posterior uveitis using a standard angiographic protocol.
        Ophthalmology. 1998; 105: 432-440
        • Chen S.J.
        • Lee A.F.
        • Lee F.L.
        • et al.
        Indocyanine green angiography of central serous chorioretinopathy.
        Zhonghua Yi Xue Za Zhi (Taipei). 1999; 62: 605-613
        • Haglund M.M.
        • Hochman D.W.
        • Spence A.M.
        • et al.
        Enhanced optical imaging of rat gliomas and tumor margins.
        Neurosurgery. 1994; 35: 930-940
        • Raabe A.
        • Beck J.
        • Gerlach R.
        • et al.
        Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow.
        Neurosurgery. 2003; 52: 132-139
        • Aoki T.
        • Yasuda D.
        • Shimizu Y.
        • et al.
        Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection.
        World J Surg. 2008; 32: 1763-1767
        • Morton D.L.
        • Wen D.R.
        • Wong J.H.
        • et al.
        Technical details of intraoperative lymphatic mapping for early stage melanoma.
        Arch Surg. 1992; 127: 392-399
        • cox C.E.
        • Pendas S.
        • Cox J.M.
        • et al.
        Guidelines for sentinel node biopsy and lymphatic mapping of patients with breast cancer.
        Ann Surg. 1998; 227: 651-653
        • Schirrmeister H.
        • Kotzerke J.
        • Vogl F.
        • et al.
        Prospective evaluation of factors influencing success rates of sentinel node biopsy in 814 breast cancer patients.
        Cancer Biother Radiopharm. 2004; 19: 784-790
        • Alazraki N.P.
        • Eshima D.
        • Eshima L.A.
        • et al.
        Lymphoscintigraphy, the sentinel node concept, and the intraoperative gamma probe in melanoma, breast cancer, and other potential cancers.
        Semin Nucl Med. 2008; 27: 55-67
        • Soltesz E.G.
        • Kim S.
        • Kim S.W.
        • et al.
        Sentinel lymph node mapping of the gastrointestinal tract by using invisible light.
        Ann Surg Oncol. 2006; 13: 386-396
        • Tanaka E.
        • Choi H.S.
        • Fujii H.
        • et al.
        Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping.
        Ann Surg Oncol. 2006; 13: 1671-1681
        • Motomura K.
        • Inaji H.
        • Komoike Y.
        • et al.
        Sentinel node biopsy guided by indocyanine green dye in breast cancer patients.
        Jpn J Clin Oncol. 1999; 29: 604-607
        • Kitai T.
        • Inomoto T.
        • Miwa M.
        • et al.
        Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer.
        Breast Cancer. 2005; 12: 211-215
        • Tagaya N.
        • Yamazaki R.
        • Nakagawa A.
        • et al.
        Intraoperative identification of sentinel lymph nodes by near-infrared fluorescence imaging in patients with breast cancer.
        Am J Surg. 2008; 195: 850-853
        • Sevick-Muraca E.M.
        • Sharma R.
        • Rasmussen J.C.
        • et al.
        Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study.
        Radiology. 2008; 246: 734-741
        • Ogasawara Y.
        • Ikeda H.
        • Takahashi M.
        • et al.
        Evaluation of breast lymphatic pathways with indocyanine green fluorescence imaging in patients with breast cancer.
        World J Surg. 2008; 32: 1924-1929
        • Fujiwara M.
        • Mizukami T.
        • Suzuki A.
        • et al.
        Sentinel lymph node detection in skin cancer patients using real-time fluorescence navigation with indocyanine green: preliminary experience.
        J Plast Reconstr Aesthetic Surg. 2008;
        • Kusano M.
        • Tajima Y.
        • Yamazaki K.
        • et al.
        Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer.
        Dig Surg. 2008; 25: 103-108
        • Miyashiro I.
        • Miyoshi N.
        • Hiratsuka M.
        • et al.
        Detection of sentinel node in gastric cancer surgery by indocyanine green fluorescence imaging: comparison with infrared imaging.
        Ann Surg Oncol. 2008; 15: 1640-1643
        • Noura S.
        • Ohue M.
        • Seki Y.
        • et al.
        Evaluation of the lateral sentinel node by indocyanine green for rectal cancer based on micrometastasis determined by reverse transcriptase-polymerase chain reaction.
        Oncol Rep. 2008; 20: 745-750
        • Swart P.J.
        • Beljaars L.
        • Kuipers M.E.
        • et al.
        Homing of negatively charged albumins to the lymphatic system: general implications for drug targeting to peripheral tissues and viral reservoirs.
        Biochem Pharmacol. 1999; 58: 1425-1435
        • Parungo C.P.
        • Ohnishi S.
        • Kim S.W.
        • et al.
        Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging.
        J Thorac Cardiovasc Surg. 2005; 129: 844-850
        • Troyan S.L.
        • Kianzad V.
        • Gibbs-Strauss S.L.
        • et al.
        The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping.
        Ann Surg Oncol. 2009; 16: 2943-2952
        • Hama Y.
        • Koyama Y.
        • Urano Y.
        • et al.
        Two-color lymphatic mapping using Ig-conjugated near infrared optical probes.
        J Invest Dermatol. 2007; 127: 2351-2356
        • Josephson L.
        • Mahmood U.
        • Wunderbaldinger P.
        • et al.
        Pan and sentinel lymph node visualization using a near-infrared fluorescent probe.
        Mol Imaging. 2003; 2: 18-23
        • Kim S.
        • Lim Y.T.
        • Soltesz E.G.
        • et al.
        Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping.
        Nat Biotechnol. 2004; 22: 93-97
        • Frangioni J.V.
        • Kim S.W.
        • Ohnishi S.
        • et al.
        Sentinel lymph node mapping with type-II quantum dots.
        Methods Mol Biol. 2007; 374: 147-159
        • Semenza G.L.
        • Artemov D.
        • Bedi A.
        • et al.
        ‘The metabolism of tumours’: 70 years later.
        Novartis Found Symp. 2001; 240: 251-260
        • Cheng Z.
        • Levi J.
        • Xiong Z.
        • et al.
        Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice.
        Bioconjug Chem. 2006; 17: 662-669
        • Gambhir S.S.
        Molecular imaging of cancer with positron emission tomography.
        Nat Rev Cancer. 2002; 2: 683-693
        • Zhang Z.
        • Li H.
        • Liu Q.
        • et al.
        Metabolic imaging of tumors using intrinsic and extrinsic fluorescent markers.
        Biosens Bioelectron. 2004; 20: 643-650
        • Koblinski J.E.
        • Ahram M.
        • Sloane B.F.
        Unraveling the role of proteases in cancer.
        Clin Chim Acta. 2000; 291: 113-135
        • Weissleder R.
        • Tung C.H.
        • Mahmood U.
        • et al.
        In vivo imaging of tumors with protease-activated near-infrared fluorescent probes.
        Nat Biotechnol. 1999; 17: 375-378
        • Tung C.H.
        • Mahmood U.
        • Bredow S.
        • et al.
        In vivo imaging of proteolytic enzyme activity using a novel molecular reporter.
        Cancer Res. 2000; 60: 4953-4958
        • Marten K.
        • Bremer C.
        • Khazaie K.
        • et al.
        Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice.
        Gastroenterology. 2002; 122: 406-414
        • Grimm J.
        • Kirsch D.G.
        • Windsor S.D.
        • et al.
        Use of gene expression profiling to direct in vivo molecular imaging of lung cancer.
        Proc Natl Acad Sci U S A. 2005; 102: 14404-14409
        • Figueiredo J.L.
        • Alencar H.
        • Weissleder R.
        • et al.
        Near infrared thoracoscopy of tumoral protease activity for improved detection of peripheral lung cancer.
        Int J Cancer. 2006; 118: 2672-2677
        • Kirsch D.G.
        • Dinulescu D.M.
        • Miller J.B.
        • et al.
        A spatially and temporally restricted mouse model of soft tissue sarcoma.
        Nat Med. 2007; 13: 992-997
        • Emmert-Buck M.R.
        • Roth M.J.
        • Zhuang Z.
        • et al.
        Increased gelatinase A (MMP-2) and cathepsin B activity in invasive tumor regions of human colon cancer samples.
        Am J Pathol. 1994; 145: 1285-1290
        • Choi Y.
        • Weissleder R.
        • Tung C.H.
        Selective antitumor effect of novel protease-mediated photodynamic agent.
        Cancer Res. 2006; 66: 7225-7229
        • Deshane J.
        • Garner C.C.
        • Sontheimer H.
        Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2.
        J Biol Chem. 2003; 278: 4135-4144
        • Mamelak A.N.
        • Rosenfeld S.
        • Bucholz R.
        • et al.
        Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma.
        J Clin Oncol. 2006; 24: 3644-3650
        • Veiseh M.
        • Gabikian P.
        • Bahrami S.B.
        • et al.
        Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci.
        Cancer Res. 2007; 67: 6882-6888
        • Ballou B.
        • Fisher G.W.
        • Waggoner A.S.
        • et al.
        Tumor labeling in vivo using cyanine-conjugated monoclonal antibodies.
        Cancer Immunol Immunother. 1995; 41: 257-263
        • Liu T.C.
        • Wang J.H.
        • Wang H.Q.
        • et al.
        Bioconjugate recognition molecules to quantum dots as tumor probes.
        J Biomed Mater Res A. 2007; 83: 1209-1216
        • Brooks P.C.
        • Clark R.A.
        • Cheresh D.A.
        Requirement of vascular integrin alpha v beta 3 for angiogenesis.
        Science. 1994; 264: 569-571
        • Wang W.
        • Ke S.
        • Wu Q.
        • et al.
        Near-infrared optical imaging of integrin alphavbeta3 in human tumor xenografts.
        Mol Imaging. 2004; 3: 343-351
        • Cai W.
        • Shin D.W.
        • Chen K.
        • et al.
        Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects.
        Nano Lett. 2006; 6: 669-676
        • Smith B.R.
        • Cheng Z.
        • De A.
        • et al.
        Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature.
        Nano Lett. 2008; 8: 2599-2606
        • Wu Y.
        • Cai W.
        • Chen X.
        Near-infrared fluorescence imaging of tumor integrin alpha v beta 3 expression with Cy7-labeled RGD multimers.
        Mol Imaging Biol. 2006; 8: 226-236
        • Zhang H.
        • Berezov A.
        • Wang Q.
        • et al.
        ErbB receptors: from oncogenes to targeted cancer therapies.
        J Clin Invest. 2007; 117: 2051-2058
        • Wang J.
        • Yong W.H.
        • Sun Y.
        • et al.
        Receptor-targeted quantum dots: fluorescent probes for brain tumor diagnosis.
        J Biomed Opt. 2007; 12: 044021
        • Aerts H.J.
        • Dubois L.
        • Hackeng T.M.
        • et al.
        Development and evaluation of a cetuximab-based imaging probe to target EGFR and EGFRvIII.
        Radiother Oncol. 2007; 83: 326-332
        • Gleysteen J.P.
        • Newman J.R.
        • Chhieng D.
        • et al.
        Fluorescent labeled anti-EGFR antibody for identification of regional and distant metastasis in a preclinical xenograft model.
        Head Neck. 2008; 30: 782-789
        • Seshadri R.
        • Firgaira F.A.
        • Horsfall D.J.
        • et al.
        Clinical significance of HER-2/neu oncogene amplification in primary breast cancer. The south Australian breast cancer study group.
        J Clin Oncol. 1993; 11: 1936-1942
        • Ravdin P.M.
        • Chamness G.C.
        The c-erbB-2 proto-oncogene as a prognostic and predictive marker in breast cancer: a paradigm for the development of other macromolecular markers – a review.
        Gene. 1995; 159: 19-27
        • Koyama Y.
        • Hama Y.
        • Urano Y.
        • et al.
        Spectral fluorescence molecular imaging of lung metastases targeting HER2/neu.
        Clin Cancer Res. 2007; 13: 2936-2945
        • Hassan M.
        • Riley J.
        • Chernomordik V.
        • et al.
        Fluorescence lifetime imaging system for in vivo studies.
        Mol Imaging. 2007; 6: 229-236
        • Lee S.B.
        • Hassan M.
        • Fisher R.
        • et al.
        Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging.
        Clin Cancer Res. 2008; 14: 3840-3849